
. . ,

74377

L

- h J f \

G : , r :
(f e_- .

- I C 2.-
University of Illinois at Urbana-Champaign L A i . <:

FL := 1 - 1 1 1

3 , xc . t 2

Computer Systems Group
r Coordinated Science Laboratory I

1101 W. Springfield Av.
Urbana, IL41801 > I 03

(217) 333-6564 0

9
W

ABsTIucr
A parallel procesSing algorithm for standard cell placement suitable for execution on a Hyper-

cube computer is presented. In the past, several parallel algorithms for performing module place-
ment have been proposed that are suitable for execution on a two-dimensional array of processors.
Those algorithms had several limitations, namely, they got stuck at local minima, were susceptible
to oscillations, could not handle variable sized modules (standard cells). and allowed only nearest
neighbor exchanges. Recmtly, the simulated annealing technique has been applied to solve the
standard cell placement problem on conventional uniprocessor computers. These algorithms do not
get stuck at local minima and can handle modulesof variable sizes. but take an extremely long
time to be execuzed. In this paper. a parallel version of the simulated annealing technique is
presented which is +ageted to run on a Hypercube computer such as the Intel ipSC. We discuss
how the cells in a two-dimensional area of a chip are mapped onto processors in an n -dimensional
hypercube such t h a i both small and large moves can be applied. Two types of moves are allowed:
cell exchanges and cell displacements. Initially, at high temperatures of the annealing process.
moves are allcwed in all dimensions of the hypercube. As the temperature is decreased. certain
dimensions of the hypercube are selectively "frozen" to restrict the range of the moves. The com-
putation of the cost function in parallel among all the processors in the hypercube is described
along with a distributed data structure that needs to be stored in the hypercube to support such a
parallel cost evaluation. The existence of Hamiltonian circuits in the hypercube topology is utilized
to broadcast the ~esults of cell moves to all processors. Initial estimates show that the algorithm is
several orders of magnitude faster than existing simulated annealing-based algorithms running on
conventional uniprocessors. The algorithm also does not have any of the above-mentioned limita-
tions of iterative-improvement placement algorithms for two-dimensional processor arrays.

Acknowledgment: This research supported by the National Aeronautics and Space Administration under Contract
NASA NAG 1-613.

1

L INTRODUCI'XON

Given a set of standard cells of constant height and variable width, and a net list which

describes the interconnections among the cells, our objective is to place the cells so as to minimize

the total length of wires interconnecting the cells. Conventional module placement algorithms

[l. 21. that were designed to run sequentially on uniprocessor computers. take a long time to solve.

Hence, several algorithms have been proposed recently to speed up the problem of module place-

ment by implementing them on two dimensional processor arrays [3.41. -However. these artay

algorithms have several limitations. namely, they get stuck at local minima, are susceptible to

oscillations, can perform nearest neighbor exchanges only, and cannot handle variablesized

modules (standard cells).

Recently, the simulated annealing technique [5] has been applied to the placement problem in

a program called Timberwolf which. by applying cell displacements and exchanges randomly,

avoids getting stuck at local minima and thereby achieves near-optiaal placement [61. A major

limitation of Timberwolf is that it is extremely slow. In this paper. we present a parallel implc

mentation of a simulated annealing algorithm for cell placement on a Hypercube computer. The

parallel algorithm does not have any of the limitations of the array processor algorithms mentioned

above ancl is several orders of magnitude faster than Timberwolf running on a VAX-11/780.

-4 hypercube topology consists of zd processors that are interconnected through the topology

of a cube in d dimensions. A &dimensional hypercube is shown in Fig. 1. Several prototypes of

such machines have been built c7.81; one of them is now available commercially from Intel 191.

II. PARALLEL ALGORITHM FOR CELL PLACEMENT ON A HYPERCUBE

We now describe an algorithm for performing the standard cell placement using a variation of

the Timberwolf [6] algorithm on a hypercube of 6 dimensions connecting 64 processors. The algo-

rithm can be easily generalized to hypercubes of other dimensions. Let us suppose that we are

given the problem of placing N standard cells where N > > 64.

,
\

2

Cell Assignment t o Processors

We now describe how cells in a two-dimensional area of a chip are assigned to processors that

are connected in the form of a 6-dimensional hypercube. For the hypercube topology, a processor

whose binary address i s p s p , - - -pi - *pa is connected to processorpg, - - -pi - - - p a via a link in

dimension i . We propose that each processor be assigned an approximately equal area portion of

the total chip area which can be viewed as a virtual 8 X 8 square grid. We initially assign the cells

-

to dserent processors such that the sums of areas of cells assigned to each

l N
64 =I

mately equal to Amp = - A,, where A, is the area of the mth cell.

processor are initially placed in a single row with no area overlap between

processor is approxi-

The cells within each

them. Since all cells

have constant height, each processor therefore is assigned a rectangular portion of the chip area.

The correspondence between processor addresses and grid points on the physical chip area is shown

in Fig. 2. by choosing which we guarantee that the processors that are adjacent in a predetermined

set of four dimensions of the hypercube allow all nearest North-South---West neighbor

exchanges. The other two dimensions of the hypercube are used for exchanges across larger dis-

tances in the area map. For example in Fig. 2. processor 26. which controls grid location (3.4). has

a 4-link to processor 10, 3-link to processor 18.2-link to processor 30, and 0-link to processor 27,

which correspond to the nearest neighbors in the North(2.4). South(4.4). East(3.5) and West(3.3)

directions: in addition. the 1-link to processor 24 and the 5-link to processor 58. control grid loca-

tions. (3.1) and (6.4). that are distance 3 away from (3.4).

Moves

For each temperature of the simulated annealing process. we define two types of moves: cell

exchange and cell displacement. At high temperatures during the simulated annealing process. we

allow exchanges and displacements of cells in all dimensions. i.e.. small and large changes. Gradu-

ally. as the temperature is decreased. for each processor, certain dimensions are 'frozen'. i.e.

changes between pairs of processors connected via those dimensions are inhibited. The temperature

3

intervals at which various physical distance changes are to be inhibited are explicitly spec~ed by

the user as a table of temperature intervals versus distance intervals. The parallel algorithm for

cell placement is outlined in Fig. 3.

Distributed Data Structure

We assume that each processor contains the following information to, aid the computation of

the cost function in parallel among processors in the hypercube: (1) A list of currently assigned

cells along with the following information for each cell: (2) The (x.y) coordinate location a t which

the center of the cell is currently placed: (3) The width of the cell: (4) A list of nets to which this

cell is connected to: (5) For each net listed in (4). a list of other cells to which the net is C O M ~ X ~ ~ .

along with their (x,y) locations: (6) A list of all (x.y> locations and widths of'all cells that are 'r:

assigned to pmcessots that are adjacent in two dimensions of the hypercube corresponding to the 5 '1
I

East-West nearest neighbors in the physical area map.

Parallel Calculation of Cost Function

Let us consider the exchange class move fim. We denote the two processors participating in

the move to be P and Q. and the respective cells that are to be considered for e a g e by cELL(P)

and CELL(Q). The resultant change in cost function consists of four terms.

A d e = Al(CELL (P 12) + A-,(CELL (Q 1.Q + Aj(CELL (P 1.Q + &(CELL (Q IS

The term A1(CELL (2')s) deals with the change in the wire length due to the movement of

cELL(P) from (x .y cQ 1, and is calculated by estimating the change in half

the perimeter of the bounding box of each net. This term can be calculated by processor P alone

since it keeps informkion about all the nets to which CELL(P) is connected. along with all the

(3.y) locations of cells that are on the same nets. and can read the (x.y) ltzcation of CELL(Q)

(which is the new (x.y> location for CELL(P)) from processor Q. We assume that the nets are con-

(p) to the (x ,y

nected to the center of each cell. The term A,(CELL<Q>.Q) relates to the change in wire length

due to the movement of CELL(Q) from (x ,y (p 1. and is computed in an idem- (Q to (x .y

4

ical manner in parallel by processor Q.

The term A3(CELL (P)Q) deals with the change in the area overlap due to the movement of

CELL(P) from (x .y (Q 1. and is calculated by processor Q since it has informa-

tion about all the c e b that are near a given (x.y) location within processor Q s area map. If

CELL(P) is placed somewhere within the processor QS area map. the cell may overlap with any

cell in processor Q. or with cells in the prowssors that are adjacent to bocessor Q in the two

dimensions of the hypercube that correspond to its --West neighbors in' the physical area map.

The term A4(CELL (Q IS) deals with the change in the area overlap due to the movement of

CELL(Q) from (x ,y)a= (Q to (x .y >p . and is performed in an identical manner in parallel by pro-

cessor P.

to (x .y

Finally, we outline how the cost function is calculated for a displacement class move. We

assume that the processors that take place in the displacement are P and Q. and the cell that is being

displaced is CEU(P). Then the resultant change in cost function is

AdirpLu = AJCELL (P 1s 1 + A*(CELL (P)JJ 1 + AJCELL (P >.a 1
where Al(CELL (PIS), computed by processor P. is the change in wire length due to the m o v e

ment of CELL(P) from (x ,y 1- to (x .y ; A2(CELL (P)S). complrted by processor P, is the

change in area overlap caused by the movement of CELL(P) from (X , Y > ~ ~ to (~ , y) ~ ~ , if

(x ,y lies in processor P's area map, otherwise the term is zero: A3(CELL (P1.Q 1. computed by

processor Q. is the change in area overlap caused by the movement of CEU(P) from (x ,y Inat to

(x ,y > a d if (x ,y > p d lies in processor Q s area map. otherwise the term is zero.

Broadcasting New Cell Locations

Once the cells have been moved. the updated cell locations have to be sent to all processors.

The scheme used to perform this broadcast uses the prooperty of the existence of Hamiltonian cir-

cuits in the hypercube topology. A Hamiltonian circuit in a graph is a closed walk that traverses

every vertes of the graph exactly once. except the starting vertes at which the walk also terminates

[lo]. A Hamiltonian circuit for the 4-dimensional hypercube is highlighted in Fig. 1. Each

processor which has an updated cell location will inform its Hamiltonian circuit successor of the

updated value of the cell location. It can be easily seen that if all 64 processors contained updated

cell locations. it will take at most 64 time steps for all the updated cell locations to be available at

all the processors.

The advantage of our algorithm over Timberwolf is that it is much faster. We are currently

implementing the algorithm in the C programming language using a Hypercube simulator running

on a Squint computer under UNM, The results of the simulation will be reported a t the confer-

ence.

We give here an estimate of performance of the proposed algorithm through an example. In

TimberWolf. the number of new states that are generated for each temperature in the annealing

process is about 100 times the number of standard cells. For a 1000 cell circuit. the number of new

states generated per stage (temperature) is 100,000. For 100 stages. Timberwolf would take about

12 hours of CPU time on a VAX-11/780 running VMS. assuming that it takes 4 milli-seconds to

generate and evaluate each new state [6]. If the placement is performed using our al&rithm on a

hypercube of six dimensions. we postulate that approximately 25% extra number of moves will be

required for convergence per stage because the hypercube algorithm allows only restricted moves

compared to unrestricted moves in Timberwolf. Hence. the number of hypercube steps required to

generate 125,000 new states per stage is about 4000 since the moves can be performed in parallel on

64 processors (32 moves at a time). The VAY-11/780 is reported to operate at 0.5 -MIPS (millions

of instructions per second) [ll], and the Intel iPSC Hypercube is reported to be 0.8 iMps per pro-

cessing node [9]. Hence, the time taken for computation for each parallel move should be about 3

milli-seconds on each processing node. We assume that each broadcasting of a change in cell loca-

tion requires 500 bytes (parameters that are needed to be passed include the cell's new location. list

of nets. list of cells on nets and their locations. sizes, etc.). The time for one message transfer per

link is 0.1 milli-seconds assuming a 10 MBytedsecond hypercube link [91. The broadcast can be

6

performed in 64 time steps, hence the time for communication is 3.2 milli-seconds. The total time

per stage for one set of parallel moves and broadcast of its result to all processors takes about 10

milli-seconds including some time for synchronization. Hence it should take about one hour for

performing the standard cell placement for lo00 cells in 100 stages on the hypercube. We there-

fore expect to get about an order of magnitude speed improvement with our placement algorithm

for lo00 cell placement using a 64 no& hypercube. We hope to achieve Several orders of magni-

tude speed improvement in a 1024 node hypercube that is being designed. at Caltech under the

MARK-III project [7].

IV. CONCLUSIONS

We note the following points about our parallel algorithm.

(1) Unlike the array algorithms for module placemend3.41 the proposed algorithm will not get

stuck at local minima since we are applying the simulated annealing technique.

(2) Our algorithm will not give rise to oscillations because we have a number of cells assigned to

each processor. A cell is chosen randomly for possible exchange with another randomly

chosen cell in an adjacent processor. Hence, even though the cell exchanges are performed in

parallel based on (x.y) locations of cells from a previous iteration step. the possibilities of

choosing the same ?air of cells for repeated exchange (oscillations) is very low.

(3) Cell exchanges can be performed among nearest neighbors through our novel area mapping

technique and also between cells that are large distances away. Hence, movement between

states that are both near and far apart in the solution space are allowed.

(4) The algorithm can handle cells with unequal areas.

(5) Our algorithm is at least an order of magnitude faster than Timberwolf running on a VAX-

11/780.

REFEBENCES
M. Hanan and J. M. Kuttzberg. "Placement Techniques." in Design Automution of Digital
Systems: Thsory and Techniques. ed.. M. A. Breuer. PrentictHall. pp. 213-282.1972.
M. A. Breuer. "Min-cut Placement." Jaw. Design Automation and Fauit Tolerant Computing,

D. J. Chyan and M. A. Breuer. "A Placement Algorithm for Array Processors." Roc. 20th
Design Automation Gmf.. pp. 182-188. Jun. 1983.
K. Ueda, T. Komatsubara. and T. Hosaka. "A Parallel Module Placement Approach for Logic
Module Placement." in IEEE Trans. Gmputer-Aided Design of Integrated Circuits and Sys-

S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi. "Optimization by Simulated Annealing." Sci-
emz. vol. 220, pp. 671-680. May 1983.
C. =hen and A. S. Vincentelli, "The Timberwolf Placement and Routing Package." Roc.
Custom Integrated C u d s Gmf. .. pp. 522-527, May 1984.
J. Tuazon. J. Peterson. M. Pniel. and D. Leberman. "Caltech/JPL Mark II Hybercube Con-
current Processor." Roc. I985 Parallel Recessing conference, pp. 666-673. Aug. 1985.
J. C. Petuson. J. 'Tuazon. D. Liebcrman. and M. Pniel. "The Mark III Hypercube-Ensemble
Concurrent Computer." Roc. I985 Parahi Rocessing Cbnference!. pp. 71-73, Aug. 1985.
Intel Scientific Computers. "iPSC The First Family of Concurrent Supercomputers." 1985.
product announcement.
N. Deo. in Graph Theory with Appikatiom to Eiaginehng and comptasr Science. Engl t
woods CliEs. N.J.: Prentice-Hall. Inc., 1974 .
J. S. Emer and D. W. Clark. "A Characterization of Processor Performance in the VAX-
11/780." A-m. Ilth Int. Symp. on copnpYrer Architecture. pp. 301-310. Jun. 1984.

V O ~ . 1, pp. 343-382. Oct. 1977.

t a . pp. 39-47. Jan. 1983.

..-

0 d im

Fig. 1. A 4-dimensional hypercube topology.

I 2 I

54

Fig. 2. Area map of 64 processor hypercube.

PROCEDURE placement:
Choose initial placement using equal area criterion.
Estimate the initial total wire length for interconnecting all
cells by assuming wire length of each net to be half the perimeter
of the bounding box for the net.
mcucdist :- 7: (* maximum grid distance of any move *>
WHILE "stopping criteria" is not satislied DO BEGIN

Generate T < T : (* user specified *>
IFTm-i < T' < T,
THEN maxdist := m : (* user specified freezing of dimensions *)

FOR each processor PARALLEL DO BEGIN

ENDFOR:
FOR EACH adjacent processor pair (p ,q in dimension d PARALLEL DO BEGIN

FOR d := 0 to 5 DO BEGIN

Select a cell randomly: Denote cell chosen in processor p by CELL (p 1;

Assign p to be Master Processor. q to be Slave Processor randomly:
IF physical distance (p ,q) d d i s t THEN

Perform cell-exchange computations regarding CELL (p and CELL (q 1:
Perform cell-eschange decision regarding CELL (p and CELL (q
using probabilistic ACCEPT (c s' 3" function on Master Processor:

ENDIF:
ENDFOR:
FOR EACH successful exchange PLuwLnL DO BEGIN

Broadcast new cell locations fiom iMaster F'rocesors to all
processors using Hamiltonian circuit concept;

ENDFOR:
FOR each processor pair (p ,q) connected in dimension d PARALLEL DO BEGIN

Assign p to be Master and q to be Slave randomly:
Select a cell randomly in Master: Denote cell by CELL (7 1:
Select a random x -location within area map of either Master
or Slave processor to which to displace cell CELL (p >;
Perform decision using probabilistic ACCEPT (c .c' 3"
function on Master:

ENDFOR:
FOR each successful displacement P A W L DO BEGIPI'

Broadcast successful new cell locations from all Master processors
to all other processors using Hamiltonian circuit concept;

ENDFOR:
ENDFOR;

ENDWHILE;
END;

Fig. 3. Parallel algorithm for cell placement.

